THE STANDARD IN MAPPING AND SURVEYING

The Trimble UX5 Unmanned Aircraft System (UAS) sets the standard for fast and safe aerial data collection by offering a complete system with powerful technologies such as a robust design, a radically simplified workflow and reversed thrust & automatic failsafe procedures. The Trimble UX5 offers a much safer method to collect data compared to traditional surveying methods. Featuring the Trimble Access™ Aerial Imaging application, flights are conducted in a fully automated manner, from launch to landing, and require no piloting skills. The Trimble UX5 makes a once time consuming and complex process incredibly easy – no matter what the conditions.

Superior Image Acquisition

The Trimble UX5 ensures optimal image quality along with maximum photogrammetric accuracy. The camera has a large imaging sensor that captures very sharp, color-rich images, even in dark or cloudy conditions. The 24 MP camera and its custom optics give the UX5 the ability to capture data down to 2 cm (0.79 in) resolution.

Unrivaled Performance

Based on a production method patented by Trimble, the Trimble UX5 combines an impact resistant foam structure and internal and external composite elements that give the UX5 its extreme durability and strength. Additionally, the design focus has been on delivering an easy to maintain airframe that can be renewed at users’ discretion by a plug-and-play fitting of the protected internal electronics.

The remarkable design of the Trimble UX5 ensures employability nearly everywhere and in practically all weather conditions. Whether you choose to fly in rainy conditions along windy seashores, in hot deserts, or in a snowy, mountain terrain, the Trimble UX5 is a dependable solution to gather high quality data without compromising coverage.

Landings, less space – more accurate

The Trimble UX5 overcomes the limitations of traditional fixed wing UAS landings with the addition of an advanced control method. Based on reversed thrust, this improved altitude measurement results in accurate and predictable landings for landing confidence every time. For professionals working in small areas, the landing angle and trajectory is compact and allows for landings in confined spaces.

Intuitive Workflows with Trimble Access

The Trimble Access Aerial Imaging application loaded onto the Trimble Tablet Rugged PC operates the Trimble UX5 and is a single software tool for planning your aerial missions, performing pre-flight checks and monitoring your flights – all with intuitive workflows that ensure reliable results. In the field, the operator is guided through the pre- and post-flight sequences with step-by-step digital checklists. The fast and intuitive workflow allows the Trimble UX5 to be ready to fly in only 5 minutes ensuring minimal downtime.

Valuable Photogrammetry Deliverables

Optimized to process data from the Trimble UX5 Unmanned Aircraft System, the Trimble Business Center Photogrammetry Module creates impressive deliverables. Produce point clouds, Triangulated Irregular Network (TIN) models and contour maps of the area flown. These can then be used to calculate volumes, excavation planning, drainage planning and many other functions. Trimble Business Center also produces a scaled orthophoto of the area that can be used to plan a project, define features of interest, identify property boundaries, or show construction progress by comparing orthophotos from different times.

Key Features

Leading image acquisition quality and data accuracy
All-terrain and all-weather performance
Reverse thrust for precise landings in confined spaces
A durable and reliable solution for intensive use
Fully automated Trimble Access workflows for ease-of-use and safe operation
Simple data processing with Trimble Business Center photogrammetry module

Superior Image Acquisition

The Trimble UX5 ensures optimal image quality along with maximum photogrammetric accuracy. The camera has a large imaging sensor that captures very sharp, color-rich images, even in dark or cloudy conditions. The 24 MP camera and its custom optics give the UX5 the ability to capture data down to 2 cm (0.79 in) resolution.

Unrivaled Performance

Based on a production method patented by Trimble, the Trimble UX5 combines an impact resistant foam structure and internal and external composite elements that give the UX5 its extreme durability and strength. Additionally, the design focus has been on delivering an easy to maintain airframe that can be renewed at users’ discretion by a plug-and-play fitting of the protected internal electronics.

The remarkable design of the Trimble UX5 ensures employability nearly everywhere and in practically all weather conditions. Whether you choose to fly in rainy conditions along windy seashores, in hot deserts, or in a snowy, mountain terrain, the Trimble UX5 is a dependable solution to gather high quality data without compromising coverage.

Landings, less space – more accurate

The Trimble UX5 overcomes the limitations of traditional fixed wing UAS landings with the addition of an advanced control method. Based on reversed thrust, this improved altitude measurement results in accurate and predictable landings for landing confidence every time. For professionals working in small areas, the landing angle and trajectory is compact and allows for landings in confined spaces.

Intuitive Workflows with Trimble Access

The Trimble Access Aerial Imaging application loaded onto the Trimble Tablet Rugged PC operates the Trimble UX5 and is a single software tool for planning your aerial missions, performing pre-flight checks and monitoring your flights – all with intuitive workflows that ensure reliable results. In the field, the operator is guided through the pre- and post-flight sequences with step-by-step digital checklists. The fast and intuitive workflow allows the Trimble UX5 to be ready to fly in only 5 minutes ensuring minimal downtime.

Valuable Photogrammetry Deliverables

Optimized to process data from the Trimble UX5 Unmanned Aircraft System, the Trimble Business Center Photogrammetry Module creates impressive deliverables. Produce point clouds, Triangulated Irregular Network (TIN) models and contour maps of the area flown. These can then be used to calculate volumes, excavation planning, drainage planning and many other functions. Trimble Business Center also produces a scaled orthophoto of the area that can be used to plan a project, define features of interest, identify property boundaries, or show construction progress by comparing orthophotos from different times.
PERFORMANCE SPECIFICATIONS

- Maximized image footprint without compromising resolution, obtained with a custom wide-angle lens and APSC-type sensor.
- Maximized coverage per flight and per hour due to large image footprint, sharp turning capability and high cruise speed.
- Reversed thrust technology for a short and steep landing circuit.
- Powerful propulsion system for steep climbs and high altitude flights.
- High airframe service life due to wing robustness and maintainability.
- Short setup time with automated procedures in Trimble Access field software.
- Self-check and failsafe procedures for safe operation.
- One-button export to Trimble Business Center to create deliverables.
- Optimized data accuracy when processed with Trimble Business Center.

HARDWARE

- **Type**: Fixed wing
- **Weight**: 2.5 kg (5.51 lb)
- **Wingspan**: 1 m (3.28 ft)
- **Wing area**: 34 dm²
- **Dimensions**: 100 cm x 65 cm x 10.5 cm (39.37 in x 25.59 in x 4.13 in)
- **Material**: EPP foam; Carbon frame structure; Composite elements
- **Propulsion**: Electric pusher propeller; brushless 700 W motor
- **Battery**: 14.8 V, 6000 mAh
- **Camera**: 24 MP mirrorless APSC with custom 15 mm lens

SOFTWARE

- **Trimble Access Aerial Imaging application**
 - Project management
 - Mission planning with option for multiple flights
 - Automated pre-flight checks
 - Automatic take off, flight and landing
 - Autonomous camera triggering
 - Automated fail-safe routines
 - User controlled fail-safe commands
 - Automated data consistency checks
 - Export to Trimble Business Center and a generic format for image processing

OPERATION

- **Endurance**: 50 minutes
- **Range**: 60 km (37.28 mi)
- **Cruise speed**: 80 km/h (50 mph)
- **Maximum ceiling**: 5000 m (16,404 ft)
- **Pre-flight system setup time**: 5 minutes
- **Take off**: Catapult launch
- **Landing**: Belly landing
 - **Type**: 30 degrees
 - **Angle**: 14 degrees

ACQUISITION PERFORMANCE

- **Resolution (GSD)**: 2.0 cm to 19.5 cm (.79 in to 7.67 in)
- **Height above take-off location (AGL)**: 75 m to 750 m (246 ft to 2,460 ft)

PERFORMANCE SPECIFICATIONS

- **Battery**: 14.8 V, 6000 mAh
- **Camera**: 24 MP mirrorless APSC with custom 15 mm lens
- **Controller**: Trimble Tablet Rugged PC

AREA COVERAGE TABLE

<table>
<thead>
<tr>
<th>Height (AGL)</th>
<th>Coverage/flight (km²)</th>
<th>Coverage/day (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70%</td>
<td>80%</td>
</tr>
<tr>
<td>75 m</td>
<td>2.0 cm</td>
<td>1.1 km²</td>
</tr>
<tr>
<td></td>
<td>(79.2 ft)</td>
<td>(42.7 mi²)</td>
</tr>
<tr>
<td>100 m</td>
<td>2.6 cm</td>
<td>1.6 km²</td>
</tr>
<tr>
<td></td>
<td>(81.9 ft)</td>
<td>(4.94 mi²)</td>
</tr>
<tr>
<td></td>
<td>1.8 km²</td>
<td>(0.43 mi²)</td>
</tr>
<tr>
<td>150 m</td>
<td>3.9 cm</td>
<td>3.1 km²</td>
</tr>
<tr>
<td></td>
<td>(1.5 ft)</td>
<td>(1.2 mi²)</td>
</tr>
<tr>
<td></td>
<td>(7.2 km²)</td>
<td>(4.83 mi²)</td>
</tr>
<tr>
<td>200 m</td>
<td>5.2 cm</td>
<td>4.4 km²</td>
</tr>
<tr>
<td></td>
<td>(1.7 ft)</td>
<td>(1.6 mi²)</td>
</tr>
<tr>
<td></td>
<td>(9.4 km²)</td>
<td>(6.87 mi²)</td>
</tr>
<tr>
<td>250 m</td>
<td>6.5 cm</td>
<td>5.8 km²</td>
</tr>
<tr>
<td></td>
<td>(2.1 ft)</td>
<td>(2.4 mi²)</td>
</tr>
<tr>
<td></td>
<td>(15.0 km²)</td>
<td>(9.54 mi²)</td>
</tr>
<tr>
<td>300 m</td>
<td>7.8 cm</td>
<td>7.1 km²</td>
</tr>
<tr>
<td></td>
<td>(2.6 ft)</td>
<td>(2.8 mi²)</td>
</tr>
<tr>
<td></td>
<td>(28.7 km²)</td>
<td>(17.3 km²)</td>
</tr>
<tr>
<td>400 m</td>
<td>10.4 cm</td>
<td>9.7 km²</td>
</tr>
<tr>
<td></td>
<td>(3.4 ft)</td>
<td>(3.75 mi²)</td>
</tr>
<tr>
<td></td>
<td>(63.7 km²)</td>
<td>(35.8 km²)</td>
</tr>
<tr>
<td>500 m</td>
<td>13 cm</td>
<td>12.4 km²</td>
</tr>
<tr>
<td></td>
<td>(4.9 ft)</td>
<td>(4.79 mi²)</td>
</tr>
<tr>
<td></td>
<td>(115.0 km²)</td>
<td>(69.5 km²)</td>
</tr>
<tr>
<td>750 m</td>
<td>19.5 cm</td>
<td>19.0 km²</td>
</tr>
<tr>
<td></td>
<td>(7.7 ft)</td>
<td>(7.34 mi²)</td>
</tr>
<tr>
<td></td>
<td>(292.5 km²)</td>
<td>(171.3 km²)</td>
</tr>
</tbody>
</table>

(1) 1 sigma for wind <30 kph (19 mph).
(2) Assuming on average 5 minutes pre-flight and 5 minutes post-flight setup and recovery time and operation between 10 am and 4 pm.